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117334, USSR 
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Abstract. Functions "F (xl, , , . , x N )  which are a straightforward generalisation of standard 
hypergeometric functions of N variables are introduced. A convenient operator rep- 
resentation is established for these functions which permits us to consider, in a uniform 
and simple way, standard hypergeometric functions (generalised hypergeometric series of 
one variable, Appell, Kampt de Feriet and Lauricella functions, etc) as well as many 
other nameless hypergeometric series arising in physical and quantum chemical applica- 
tions. Generating functions, generalisations of Bailey and Chaundy expansions, recurrence 
relations, reduction rules and some other topics are discussed. 

1. Introduction 

The hypergeometric functions frequently arise in integration of differential equations. 
There are, however, other important cases which lead to these functions as well. For 
example, many auxiliary algebraic and integral transformations in various physical 
models give rise to these functions. In these latter cases only a restricted problem of 
calculating or establishing some special properties of such functions has usually arisen. 
The well known examples are: the generalised hypergeometric series of one variable, 
d;4, for example, the confluent hypergeometric Kummer function, lF1; the Gauss 
function, zF1;  the Clausen function, J;2, in terms of which the Clebsch-Gordan 
coefficients are expressed; the p3 function to which the Racah coefficients are related 
(Varshalovich et a1 1975), etc. In a number of physical applications hypergeometric 
functions of many variables arise, for example, the Appell functions in quantum 
mechanics of atomic systems (Brown 1967), the Lauricella functions in the hyper- 
spherical harmonics model (Erdelyi 1953, § 12.5), and so on. Though a vast literature 
is devoted to the hypergeometric series, nevertheless, versatile types of functions and 
a rather wide range of questions arising in applications lead to some difficulties in 
analysing necessary properties even in the case of standard functions. 

A vast field of application of the hypergeometric functions is represented also by 
the quantum chemistry problems, in particular, the problem of multicentre matrix 
elements whose calculation is the main difficulty in applications of variational methods 
to molecular systems. Here, in a number of cases the functions arise which, though 
similar to the standard ones, do not coincide with the latter to the last term. Certain 

@ 1983 The Institute of Physics 1813 



1814 A W Niukkanen 

difficulties are encountered when analysing these functions, since they have few 
recorded properties (recurrence relations, expansions, addition theorems etc). The 
derivation of such properties by means of the 'standard' methods, which are far from 
elementary ones, is often rather cumbersome and, at the same time, often an ungrateful 
job, since relations obtained for a specific function may be directly transferred to 
other functions of similar structure only in a few cases. Hence, one meets with the 
necessity of repeated, tiresome calculations ad hoc. 

In this connection, it seems expedient to extend a class of the hypergeometric 
functions to such a minimum range that would embrace as many standard functions 
as possible, as well as other functions of similar structure, arising in applications, 
which could be studied in a uniform and simple way. 

2. Function NF: definition, relations to other functions, terminology 

For a standard generalised hypergeometric series of one variable (GHs-1) we shall use 
notation which differs slightly from the conventional designation pFq (Bailey 1935a, 
ErdClyi 1953, Luke 1975): 

p a : x  OD ( a ) ; x '  
F , [ c  I =  c --I. i = o  (c)i r .  

Symbols a, c denote the sets of numbers 

(2) a = u l . . . P  1 = 1 . . 4  1 = ( U  , . . * , U P ) ,  = (c , . * . , c4), 
D a 

where (a)i  = T ( a  + i ) / r ( u )  is a Pochhammer symbol. Introduce the function "F 
( x 1 ,  * * * 9 X N ) ,  

which will be referred to as a generalised hypergeometric series of N variables (GHS-N). 

'Vectors' a,, c, (a = 0, 1, . . . , N )  have dimensions p-, 4, (see equations (21, (3)), 
respectively. In contrast to 'individual' (i) parameters a,, cs (s = 1,2,  . . . , N ) ,  we shall 
call ao,  co parameters 'gluons', or gluing (g) factors, since in their absence (the case 
p o  = 90 = 0 which will be symbolised by a standard sign *) the series (4) breaks up into 
the product of iV GHS-1: 

In the other extreme case, when i-parameters a,, c, ( p ,  = qs = 0; s = 1, . . . , N )  are 
absent, the series (4) assumes a form of GHS-1 of the sum of the arguments x,. Indeed, 
denoting the set of conditions 

( 6 )  i 1 s 0 , .  . . , i N  s o ,  i l + i z +  . . . +  i N = i ,  
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Amongst the standard hypergeometric series the following are the closest to the 
series (4): the KampC de FCriet functions (Appell and KampC de FCriet 1926, § XLIII) 
and the Lauricella functions (Appell and KampC de FCriet 1926, §§ XXXVII- 
XXXIX). The case of the KampC de FCriet functions corresponds in (4) to the following 
constraints: 

N = 2, p1 = p z = p ,  41 = 9 2  = 4.  

The case of Lauricella functions arises when 

ps = p ,  4s = 4  (s = 1 , 2 , .  * . , N ) ,  (8) 

P O + P  = 2, q o + q  = 1.  (9) 

We shall not go into classification of the series "F which can be easily built up by 
analogy with the traditional classification (Appell and KampC de FCriet 1926, 
§ XLVIII)?. However, we shall specify the function 

(10) 

which is most typical for applications, by the gluon (g) type ( p o / q o ) ,  the individual (i) 
type ( p / q )  and the (total) type ( p o + p / q o + q ) .  Obviously, the particular type of the 
function "F (10) may be considered as the direct generalisation of either the KampC 
de FCriet functions, for the case of arbitrary number of variables, or the Lauricella 
functions, for the case of arbitrary type. 

N ~ 0 . p  = N P ~ . P , , , P  F,o., - F40.4 ... 4, 

Note that in our notations the Lauricella functions have the form 

where the correspondence with the Appell functions, into which the corresponding 
Lauricella functions transfer at N = 2, is indicated. All the Lauricella functions have 
the same type (2/1).  

As has been mentioned in the introduction, the functions "F are encountered 
frequently, though implicitly, in physical applications (some examples are given below). 
Besides, these functions give an expedient framework which embraces numerous 
'standard functions' and embody, at the same time, one of those classes of non-standard 

+ Note that classification of the double hypergeometric series by Horn's order has been criticised by Carlson 
(1976) who showed that the same function can be represented by two series of different orders. Therefore, 
'the order of such a series is not a fundamental property' which implies that 'the theory of double 
hypergeometric series needs a new starting point' (Carlson 1976). The author is indebted to the referee 
for this indication. 
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hypergeometric functions which are 'nameless and have few recorded properties' 
(Wright et a1 1977). 

Note that the term 'generalised', applied to the function "F, does not mean 'the 
most general'. The functions "F, along with the Kampe de Ftriet functions, correspond 
to the particular type of the 'general', i.e. satisfying the Horn criterion (ErdClyi 1953, 
§ 5.7), hypergeometric series for which polynomials, entering into the ratio of con- 
tiguous coefficients of the series, are expanded into the product of linear functions of 
indexes. Such an analogy, apparently, would allow us to extend many results by 
KampC de Fkriet to the case of more general functions NF. However, the approach 
used by Appell and KampC de FCriet (1926, §§ XLVI-L), with the exception of some 
integral representations and the simplest reduction rule, is connected mainly with 
special problems of the theory of differential equations and is of restricted value for 
applications (recurrence relations, multiplication and addition theorems, connections 
with more simple functions, etc). 

We establish here a number of simple properties of "F functions which, though 
following from elementary considerations, have not been, to the author's knowledge, 
formulated explicitly and, though not very profound, turn out to be of use for many 
purposes. First, we consider one practically important example that leads to "F 
functions of general type. 

3. Reduction of the Lauricella functions with unit argument to "F functions. The 
differential identity for "F 

The functions "F of general type may arise, in particular, as a result of reduction of 
the Lauricella functions with unit argument. Such a situation takes place, for example, 
when the addition theorems for the Laguerre polynomials are used in molecular 
integrals with hydrogenic-like functions. 

At the beginning, we shall use the following simple transformation of the "F 
function. By division of the set of summation indices in (4) into two sets ( i l , ,  , . , i k )  

and ( i k + l , .  . . , i N ) ,  using the identity 

( a o ) l l +  + I N  = (ao) l l+  + I k ( Q o + i l + * *  * f i k ) l k + l +  + I N )  

where 

(1 1) 

and taking into account that summation over i k t l , .  . . , i~ gives rise to the function 

1 a o + n  = (ao  + n ,  . . . , a 3  + n ) ,  

F, we obtain the identity of the Darling (1935) type: N - k  

Although, for the reduction of the Lauricella functions, we need only a particular 
case of formula (12), we note here one general corollary of (12). Introducing operators 
S s  = x,a/ax, and noting that for any analytical function 

f ( i s ) X k  =f(s,)X;, 

we obtain from (12) the operator identity 

"3 'FF. NF = N - k  P ~ . P ~ + ~ . . . P ~  a o + S l + . . . + 8 k ; a k + l  ..... a N ; x k +  x 
F 4 0 s 4 k + l . . . 4 N  [ C O + 8 1 + . . . + 6 k  ;ct+l ,.... C N  
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Since (13) is valid for any k (0 s k s N ) ,  letting k = N - 1, we get the relation for the 
operator that 'generates' the function "F from N-'F:  

(14) N F = F P ~ + P ~  a o + d l +  ...+ S N _ , , a N : x N  N - 1  
~ O + ~ N [ C O + ~ ~ + . . . + S N _ ~ , C N  I F* 

Iterating (14), we obtain the identity 
N F = F P ~ + P ~  a o + & l + . . . + 6 N - 1 . a N ; x  N] . . . F p O + p Z  a o + 6 1 ~ a 2 ~ x z ~ ~ o + ~ l  a O ; a l ; x l ]  

q O + q N [ C 0 + 6 1 + . . . + d N - l , e N  40+42 [ c o + 6 1 . c z  4 0 + 4 1  [ C O  E1 

that reveals a close connection of the function "F with N cm-1 of the types ( p o  +ps /qo  + 
4s), s = 1 ,2 ,  . . . , N, respectively. In § 4 we shall obtain, however, an operator rep- 
resentation that forms a more convenient ground for studying "F functions, because 
it leads to more complete factorisation of the "F function and contains only one 
differential operator of simpler form. 

Returning to (12), we assume that the function "F on the left-hand side is the 
Lauricella function with unit argument (for example, x N  = 1). Letting k = N - 1 and 
taking into account that, in virtue of (8) and (9), the function N-kF in (12) takes the 
form 

(15) 
equation (15) may be transformed by means of the Gauss theorem (ErdClyi 1953, 
equation 2.1 (14)). Depending on the type of the Lauricella function, the gluon index 
I = i l +  . . . + appears in the right-hand part of the Gauss theorem in one of the 
following three forms: r (a  + I ) ,  T(a  -I) or r ( a  -21). Using obvious identities 

2 a + i l + , . . + i N - l , a N ; l  
F1 [c:+i l+ ...+ iN-l.cN I ,  

r(a -n)=r(a)(a-n), , ,  (a), = (-l),(-a - n  + l),, 

as well as the formula of duplicating the r-function argument, we shall transform the 
contributions, depending on the index I, to the 'hypergeometric' form 

r ( a  +I) = r ( a ) ( a h  

r(a -21 )  = r(a)4-1(-a/2+ 1)i1(-a/2+$);1. 

- I )  = r(a)(-i)r(-a + I ) ; ' ,  

Thus, the reduction of NF functions of (2/1) type gives rise to N - l F  functions of 
(3/2), (4/3) or (2/1) types, respectively. In the case of the function FD the type of 
the function does not change, i.e. in case of other unit arguments (19) may be used 
again. When all the arguments are equal to 1, this leads to the formula 

which, with due respect to the Gauss theorem, is equivalent to the reduction formula 
of Appell and KampC de FCriet (1926, equation (51) in 9 XXXVII). Other examples, 
that lead to the functions "F of the general type, are given in 09 4,  5,  8. 
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4. Operator representation of the "F function 

Supplying the arguments x s  with a common scaling factor, U ,  and introducing a 
summation index, i, according to (6), by analogy with the transformation (7), we have 
the following representation for the function NF: 

Writing down the product of N corresponding GHs-1  with a common scaling factor, 
t ,  in a form of GHS-N according to (5)  and using then the transformation (20) for the 
resulting GHS-N, we obtain 

and hence 

1 a' 
i !  at' ' YR = - - Nnlf,O. 

Note that it follows from (20) and (22) that the integration of functions fF, fn 
by the variable U with such a weight function, cp(u), that the integral 

has a r-product form (k and q are constants independent of i), leads to the function 
kF of higher type. Such a situation takes place, in particular, for the coefficients of 
expansions of fF or fII  functions over the Laguerre polynomials and 'shifted' Jacobi 
polynomials, as well as over the generalised analogues of these polynomials (Luke 
1975, ch 11). 

Substitution of (23) into (20) yields, with due respect for definition (l), the following 
operator representation of the function "F: 

N 

(24) 
The remarkable feature of the representation (24) is a complete multiplicative factori- 
sation of the function f F  in variables U ,  XI, . . . , X N  which leads to numerous analytical 
corollaries. In the case of GHS-1 equation (24) assumes the form ( p  =po+pl ,  q = 

(25) 

N P ~ . P ~ ~ . . P ~ [ ~ ~ ~ ~ ,  ...., a N ; u x I  ..... ux,.,] = F P ~  [ a o : u d / J t p p l  [ a l ; r x l ]  . , , ~~, . , [a , . , ; tx , . ,  
F 4 0 s q 1 . . . 4 N  C O  c l .  . . . s C N  40 C O  41 c 1  4N C N  ]1t=o' 

40'41) 
] = ~ p o [ a o ; u J / J t  ~ p [ a ; u x ]  = F P ~ + P I  a o . a l ; ~ x  

qo eo F:; [:~s'xI1r=o, q c  40+41 [ C O , C ,  

where 
a. *-Po u1 = u P o + l . . . P  CO = 1-40 cl  = c 4 0 + 1 . . 4  

7 , 
Thus (24) not only makes it possible to reduce "F series to ' F  series, but allows also 
the further reduction of GHS-1 of a complicated type to GHS-1 of simpler type. 
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Using the differentiation formula for GHS-1 (Luke 1975, equation 5.2.2 (1)) 

where the symbol U + n  is explained in (ll), we obtain by means of (24) 

where no = n l  + . . . +nN,  d ( t )  = a/at, and the symbol [n,] denotes the shift of all the 
parameters of both numerator and denominator of the corresponding GHs-1 by the 
value n,. Writing down an arbitrary function F ( d ) ,  where d = d ( t ) ,  as a series in 
powers of the operator d ,  and using for i < n the commutation relation 

dit" = i!tn-iLy-i(-rda), 

and for i 2 n the commutation relation 
dit" = n !LL-"(-t&o)di-", 

where (t&O)' =t4d4 ,  and also taking into account the expression of the Laguerre 
polynomials in terms of the Kummer function, @, we obtain 

F'(d)t"f(t) l t=o =F'"'(d)f(t)It=o, (28) 
where F'" ' (z)  = (a"/dz " ) F ( z ) .  Applying (28) to expression (27) with due respect for 
the formula (26), we obtain the differentiation rule for the function NF: 

In the following we give some less trivial applications of the operator representation 
(24). 

5. The generating function for the series NF. Generalisation of the Chaundy 
expansions 

Equation (24) shows the close link of the function "F with the product of N hyper- 
geometric series of one variable. We shall give here one more aspect of such a link 
that leads to a far reaching generalisation of four Chaundy (1943) expansions of 
particular type (see also ErdClyi 1953, equations 4.3 (12-15)). At the same time, this 
gives rise to a simple addition theorem for the product of N GHs-1 and yields one 
more important example of practical interest that leads to the functions NF, 

Consider the quantities YR (21) which are the coefficients in the expansions of 
the functions f F  (20) and YII (22) in powers of parameters U and t ,  respectively. 
Since the summation variables is (s = 1, . , . , N), in (21) obey the linear equation (6), 
one of them may be excluded from the summation if we express it in terms of the 
other N - 1 variables, is, and the variable i. For example, 

iN=i - I ,  I = i l + i z + .  . .+iN-l. 

The contributions depending on the index I appear in (21) in the form 
1 i - I  [(aN)i-I/(cN)i-I][(i -I)!]- X N  * 
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As in 8 3,  we transform this expression in such a way that the contributions depending 
on I would assume a 'hypergeometric form' of the Pochhammer symbols. Using the 
transformation 

(a)l-r = (U)~( - I ) ' ( I - -U  - i)F1 (30) 

and its particular version 

l / ( i  --I)! = ( I ) ~ ? I =  ( l / i ! ) ( - l ) r ( - l ) I ,  (31) 

we obtain the necessary expression: 

(aN)I-I x F r  - -- ( U N ) ,  X ;  (-i)r(l - i  -cN)r [ (- l ) q N + l - P N -  3: 
( c N ) , - I  ( i - I ) !  ( c N ) ~  I !  (1-i-UN)I X N  

As a result, the quantity YR assumes the form of a generalised hypergeometric series 
of N - 1 variables: 

where (+N = ( - 1 1 ~ "  and QN = qN + 1 - p N .  

This means, in virtue of (22), that the product of N generalised hypergeometric 
series serves the generating function for the function N - l F  which is presented by (32): 
N n =FPI [ a l : x l r ]  . . . FPN-I [ a N - l : X N - l f ~ P N [ a N : X N 1 ]  

41 Cl 4 N - 1  C N - l  4N CN 

This circumstance alone justifies the introduction of "F functions, to say nothing of 
the other examples. In the case N = 2 the function N - l F  on the right-hand side of 
(33) has a form of GHS of one variable. This allows us to write down the expansion 
of a product of two GHS'S in a form 

As particular cases, from this expansion follow four Chaundy (1943) expansions for 
the products of two GHS'S of a special type: FYFY, F i F : ,  F:F:, F$;. 

As other particular cases of formula (33), the generating functions for the Lauricella 
functions Fc and FD are easily obtained: 

m i  
X N  N - l F 2 : 0 [ - , i , l - i - c N ;  *...* ; x l / x N  ,..., x N - ,  

* '  C 1 .  .... C N - 1  F:  [ ~ ~ f x l ]  . . . FY = 1 - 0 1 
i = o  (cN)ii! 

00 I (34) 
] r i .  FA[:':'"']. . .FA[f""""]= 1 ( u N ) ' ~  X N N - I ~ I : ~  1 0  [-i:a 1-i-laN;*N.;' ..... a 

; x l / x N  ..... x N - l / x N  

i = O  

Note that in the case of non-positive integers a l ,  . . . , aN equation (34) yields an 
explicit expression for the coefficients of a polynomial in terms of its roots, i.e. an 
alternative formulation of the Vietta theorem. Formula (34) turns out to be useful 
also for the derivation of one of the versions of an addition theorem for the Laguerre 
polynomials. 

Note that the dependence of the function N - l F  in (33) on its arguments is of 
polynomial type, since one of the gluon numerators is a non-positive integer. The 
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function "F turns out t6 be polynomial also in the case when each of the sets of 
i-numerators U,, s = 1, 2 , .  . . , N, contains a non-negative integer ( -as ) .  In this case, 
by analogy with the transformation of a terminating series, Ff: (Luke 1975, equation 
5.2.1 ( 5 ) ) ,  the polynomial "F can by ordered by descending rather than ascending 
powers of arguments. To this end, we replace variables is on the right-hand side of 
the definition (4) by the new variables is = n, -is, and make use of tranformations (30), 
(31). As a result, we obtain 

I ,  
(35) 

N qo.q, *I ... q N  + I  cn-n 
L1aO-n 

nN + 1 ;-n . -ci  -n  I + 1 ,.... -nw-cN -nN A I  ;Si /x ,  ..... b N / x ,  
nN + 1 ;-a 1 - n  1 + 1 ..... -aN -nN + 1 x FPo.Pi ... plrl 

6. Recurrence relations 

The operator representation (24) allows us to obtain recurrence relations for the series 
F with the help of recurrence relations for the series ' F  appearing on the right-hand 

side of (24). In their turn, the recurrence relations for the functions ' F  can be derived 
by means of the operator representation (25). In some special cases this gives a useful 
alternative to the Rainville (1945, 1960) approacht. 

Two simple forms of factorisation of the series 'F ,  based on the representation 
(251, have the form 

(36) 

(37) 

Formulae (36) and (37) allow us to use for studying the series Ff: of general type the 
properties of the 'elementary' series FA and F? connected, respectively, with the 
binomial function and the Bessel function (ErdClyi 1953, equation 7.2 (3)). Using 
this connection, we have the following recurrence relations for the series FA and Fy : 

F~[,"~']-F~[f ' '~*]+F~[~+'~']z = 0, (38) 

(39) 

Using the relations (38), (39) in (36), (37) and applying again the formula (25), we 
obtain 

N 

FL?[;:' : ; X I  =FA[t";a/at P - 1  n' . . ,Q"- 'n"+ ' . . .Q~; IX  IF, [ c l .  L o ,  

q-1 C' ... C;-iC"' ... C q l t = o .  
*;a /a l ]Fp  [Q" .  P ' I X  F:[:; . : 'x]=Fy[cw 

C(C - 1)Fy [:"]-c(c - 1)Fy [ : " I -  Fy[ f ; c ' l ]~  = O .  

f Rainville derived a complete set of recurrence relations for a special class of contiguous Jq's. In this 
connection an interesting question arises whether all the recurrence relations or at least all those for 
contiguous ,,Fq's can be obtained from the operator representation (25). The author is indebted to the 
referee who indicated this problem. 
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Eliminating the last terms from (40) and (41), we arrive at the recurrence relation 

(a”  - c ,  + l )F~[::”]-a’~~[c.““+’. . . :” ] + (C ” - 1)F: [ PI.:. - 1, ..] = 0. (42) 

In contrast to (40) and (44), only two parameters, a” and c ” ,  change their values in 
(42). Writing down (40) for some value v ’  different from v and eliminating the last 
term in (40), we obtain the relation 

(43) ] + a  Y’FqP[,.a~’+l...:x [: :XI - a UF,P [ ,.U ” + 1 ... :x 1=0,  (a U - a 

which corresponds to change of two parameters, a”  and a ” .  A similar procedure in 
the case of (41) results in the relation 

(44) 

in which only two parameters, c @  and c ,  are changed. Thus, (42), (43) and (44) 
correspond to three cases of various types, when one of two changing parameters is 
numerator and the other one is denominator, or both of them are either numerators 
or denominators simultaneously. 

Each of these equations can be used either for the gluon function, F,P:, or for any 
of the series FP,: (s = 1,2,  . . . , N )  in (24). For example, applying (40) for F z  in (24) 
and using the differentiation rule (26) we have the following recurrence relation for 
the series ”F (we write down only the changing parameters): 

P a:“ (c”  -c”’)F,P[f:”]+ (c” - l)F,P[PI.;EX*-I.,,I - ( c ” ’ -  1)F, [...c-’-l...l = 0, 

where v = 1, . . . , pa. Applying the same equation for some series F k  in (24) and then 
taking into account relation (28), we obtain 

A similar procedure for (41) gives the following recurrence relations: 

( ~ o ) I ( ~ ~ ) I N  a + I .  a +I... 
(CP - l ) ~ ~ [ : : : = ~ - , . . . l - ( c P  - l ) P - x s u  u ~ ~ & l ~ ; : : c ; + l . . .  1 = 0. 

(c n) 1 (cs ) 1 

We shall not write down the corresponding analogues of (42), (43), (44), since they 
differ from the initial equations only in substitution of the values of a i ,  a:’, CO”, CO”’ 
or a ,”, a ,”’, c P, c P’  instead of a ”, a ”, c,, c: and in replacement of the symbol Ff: by NF. 

7. Expansion of function NF in terms of simpler functions. Generalisation of the 
Bailey expansion 

The operator representation (24) provides also a more systematic basis for obtaining 
various expansions and addition theorems. Indeed, using some transformation of the 
product of GHs-i in (24) and applying the operatorF(ua/at) to the resulting expression, 
one may easily obtain various alternative representations for the function “F. 
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As an example, we obtain the expansion of function "F of arbitrary g-type over 
functions NF of g-type (2/0) which coincide with the Lauricella functions, FC (18), 
for the case where all i-types of the initial function "F are equal to ( O / l ) .  

First, we shall obtain an expansion of the product of N arbitrary GHs-1 over the 
functions FY, which generalises the corresponding Bailey (1935b)t expansion for the 
product of two GHs-1 of (O/l)-types (see also equation 7.15(7) in ErdClyi 1953). 
Writing down the product of N GHs-1 in the form of equation (22), then multiplying 
both sides by the quantity t'"2, using the Neumann series for the function Jtv+2i, 
making obvious substitutions and reordering of summation variables and then using 
the same transformations as in (30) and (31) with due account of the formula (20), 
we obtain the necessary generalisation of the Bailey theorem: 

In the case N = 2, p l  = p 2  = 0,  q1  = q2 = 1 the expansion (45) is equivalent to Bailey's 
(1935b) expansion (3.1). 

By virtue of relations (28), (26) 

Using (45) and (46) in (24), we obtain finally 

(47) 

Equation (47) may be interpreted either as expansion in terms of the functions 
F of g-type (2/0), or as expansion over the functions F::+l ( U ) ,  i.e. as the 'argument's 

multiplication theorem' associated with the scaling transformation of the function NF. 

a +m:u  
x umF4p~+1 [ c : + m . v + 2 m + l l .  

N 

8. Concluding remarks 

We did not intend either to carry out some complete investigation of the general 
properties of the functions NF, or to consider the detailed applications of these functions 
to some specific problem of mathematical physics. Nevertheless, there are clear 
indications of numerous possible applications of these functions. Indeed, it is clear 
from the above examFles that the functions "F comprise not only various types of 
standard hypergeometric series, but also those series which result from the typical 
operations (such as integration, reduction, addition theorems, etc) over the standard 
series. In particular, these functions are useful in evaluation of multicentre integrals 
in variational calculations of molecular electron structure. For example, the coefficients 
in addition theorems for the Laguerre polynomials have a compact expression in terms 
of these functions. This, in turn, considerably facilitates the calculation of multicentre 
integrals with hydrogenic-like functions. 

t Bailey formulates such an expansion in terms of the Bessel functions rather than the series Fy. 
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Note one more important class of the problems leading to the functions "F of a 
general type. Let &, be the adjacent function to a function qn, that is 

exp(ax = C G n  (a  )pn ( x  ). 
n 

Using the identity 

f (a )  = exP(d/dr)f(t)lr==o 

that follows, for example, from the Taylor series for the function f(a + t ) ,  one may 
easily show that the coefficients of the formal expansion over the adjacent system of 
functions 

f(a ) 5 C cnG ( a / u  
n 

have the form 

c n  = q n ( u a / a r ) f ( t ) l r = o .  

This means that the coefficients in the expansion of the function f (a)=yl l  over a 
complete set & ( a / u )  coincide with the functions rF (24), if 

where the parameters ao,  co are supposed to be linearly dependent on the index n. 
A number of similar examples is formed by expansions of the exponential function 
into the Fields and Wimp (1963) series (see also Luke 1975, ch 11). 

As far as more detailed and complete study of the functions :F is concerned, the 
above examples show that the operator representation (24) may serve as a convenient 
basis for deriving any properties of these functions which may be needed in applica- 
tions. Indeed, equation (24) ensures that any property of the function .F is a 
consequence of the properties of generalised hypergeometric series of one variable, 
many of which were studied in detail. In those cases when the necessary information 
is absent, the specific version of an operator representation (25) allows us to reduce 
a corresponding hypergeometric series or one variable to the series of a simpler type: 
eventually, to the series of binomial (FA) and Bessel (Fy)  type, as takes place, for 
example, in (36) and (37). 
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